1.单选题- (共11题)
8.
小刚家2017年和2018年的家庭支出情况如图所示,则小刚家2018年教育方面支出的金额比2017年增加了( )


A.0.216万元 | B.0.108万元 | C.0.09万元 | D.0.36万元 |
9.
下列判断正确的是( )
A.高铁站对旅客的行李的检查应采取抽样调查 |
B.一组数据5、3、4、5、3的众数是5 |
C.“掷一枚硬币正面朝上的概率是![]() |
D.甲,乙组数据的平均数相同,方差分别是S甲2=4.3,S乙2=4.1,则乙组数据更稳定 |
2.选择题- (共2题)
3.填空题- (共6题)
17.
如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=
(x>0)的图象与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积为15,则k的值是_____.


4.解答题- (共6题)
21.
如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有PA2=PB2+PC2则称点P为△ABC关于点A的勾股点.
(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A、B、C、D、E、F、G均在小正方形的顶点上,则点D是△ABC关于点 的勾股点;在点E、F、G三点中只有点 是△ABC关于点A的勾股点.
(2)如图3,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,
①求证:CE=C
D;
②若DA=DE,∠AEC=120°,求∠ADE的度数.
(3)矩形ABCD中,AB=5,BC=6,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,
①若△ADE是等腰三角形,求AE的长;
②直接写出AE+
BE的最小值.
(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A、B、C、D、E、F、G均在小正方形的顶点上,则点D是△ABC关于点 的勾股点;在点E、F、G三点中只有点 是△ABC关于点A的勾股点.
(2)如图3,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,
①求证:CE=C

②若DA=DE,∠AEC=120°,求∠ADE的度数.
(3)矩形ABCD中,AB=5,BC=6,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,
①若△ADE是等腰三角形,求AE的长;
②直接写出AE+


22.
某校准备组织七年级400名学生参加夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人
(1)每辆小客车和每辆大客车各能坐多少名学生?
(2)若学校计划租用小客车a辆,大客车b辆,一次送完,且恰好每辆车都坐满,
①请写出
、
满足的关系式__________.
②若小客车每辆租金2000元,大客车每辆租金3800元,请你设计出最省钱的租车方案.
(1)每辆小客车和每辆大客车各能坐多少名学生?
(2)若学校计划租用小客车a辆,大客车b辆,一次送完,且恰好每辆车都坐满,
①请写出


②若小客车每辆租金2000元,大客车每辆租金3800元,请你设计出最省钱的租车方案.
试卷分析
-
【1】题量占比
单选题:(11道)
选择题:(2道)
填空题:(6道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:6
7星难题:0
8星难题:7
9星难题:9