1.单选题- (共9题)
6.
如图所示图象(折线ABCDE)描述了轮船在海上沿笔直路线行驶过程中,轮船离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①轮船共行驶了120千米;②轮船在行驶途中停留了0.5小时;③轮船在整个过程中的平均速度为
千米/时;④轮船自出发后3小时至4.5小时之间行驶的速度在逐渐减少,其中正确的说法共有( )



A.1个 | B.2个 | C.3个 | D.4 个 |
2.填空题- (共5题)
3.解答题- (共7题)
17.
已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.
(1)求正比例函数的解析式;
(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.
(1)求正比例函数的解析式;
(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.

18.
如图1,在平面直角坐标系中,已知A(a,b),且a、b满足
,
(1)求A点的坐标及线段OA的长度;
(2)点P为x轴正半轴上一点,且△AOP是等腰三角形,求P点的坐标;
(3)如图2,若B(1,0),C(0,-3),试确定∠ACO+∠BCO的值是否发生变化,若不变,求其值;若变化,请求出变化范围.

(1)求A点的坐标及线段OA的长度;
(2)点P为x轴正半轴上一点,且△AOP是等腰三角形,求P点的坐标;
(3)如图2,若B(1,0),C(0,-3),试确定∠ACO+∠BCO的值是否发生变化,若不变,求其值;若变化,请求出变化范围.

19.
如图,在Rt△ACB中,∠ACB=90º,点D是AB的中点,点E是CD的中点,过C作CF∥AB交AE的延长线于点F,连B

A. (1)求证:△ADE≌△FCE; (2)若∠DCF=120º,DE=2,求BC的长. |

20.
在菱形ABCD中,∠BAD=60°
(1) 如图1,点E为线段AB的中点,连接DE、CE.若AB=4,求线段EC的长
(2) 如图2,M为线段AC上一点(不与A、C重合),以AM为边向上构造等边三角形AMN,线段MN与AD交于点G,连接NC、DM,Q为线段NC的中点,连接DQ、MQ,判断DM与DQ的数量关系,并证明你的结论
(3) 在(2)的条件下,若AC=
,请你直接写出DM+CN的最小值
(1) 如图1,点E为线段AB的中点,连接DE、CE.若AB=4,求线段EC的长
(2) 如图2,M为线段AC上一点(不与A、C重合),以AM为边向上构造等边三角形AMN,线段MN与AD交于点G,连接NC、DM,Q为线段NC的中点,连接DQ、MQ,判断DM与DQ的数量关系,并证明你的结论
(3) 在(2)的条件下,若AC=


试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:10
7星难题:0
8星难题:3
9星难题:6