1.单选题- (共6题)
2.
据5月23日“人民日报”微信公众号文章介绍,中国兵器工业集团豫西集团中南钻石公司推出大颗粒“首饰用钻石”,打破了国外垄断,使我国在钻石饰品主流领域领跑全球,钻石、珠宝等宝石的质量单位是克拉(
),
克拉为
分,已知
克拉
克,则“
分”用科学计数法表示正确的是( )








A.![]() | B.![]() | C.![]() | D.![]() |
3.
如图,一辆汽车在龙城大街上沿东向西方向正常行驶,从点
处开始减速驶入路况良好的祥云桥北匝道桥,接着驶入滨河东路后沿北向南继续正常行驶.下列四个图像中能刻画该汽车这个过程中行驶速度
(千米/时)与行驶时间
(时)之间的关系是( )





A.![]() | B.![]() | C.![]() | D.![]() |
4.
有一种手持烟花,点然后每隔
秒发射一发花弹。要求每一发花弹爆炸时的高度要超过
米,否则视为不合格,在一次测试实验中,该烟花发射出的第一发花弹的飞行高度(米)随飞行时间(秒)变化的规律如下表所示.下列这一变化过程中说法正确的是( )




A.飞行时间![]() ![]() ![]() ![]() |
B.飞行时间![]() ![]() ![]() ![]() |
C.估计飞行时间![]() ![]() ![]() ![]() |
D.只要飞行时间![]() ![]() |
5.
如图,ΔA¢B¢C≌ΔABC,点B¢在AB边上,线段A¢B¢,AC交于点D.若∠A=40°,∠B=60°,则∠A¢CB的度数为( )


A.100° | B.120° | C.135° D. 140° |
2.填空题- (共5题)
11.
如图,已知△ABC中,点D在AC边上(点D与点A,C不重合),且BC=CD,连接BD,沿BD折叠△ABC使A落在点E处,得到△EB

A. 请从下面A、B两题中任选一题作答:我选择_____题. |
B.若AB=AC,∠A=40°,则∠EBC的度数为______°. |
C.若∠A=α°,则∠EBC的度数为_______°(用含α的式子表示) |

3.解答题- (共7题)
14.
在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的竟是关系:

(1)在这个变化过程中,自变量是 ,因变量是 ;
(2)在当地温度
每增加
,这种蟋蟀
叫的次数
是怎样变化的?
(3)这种蟋蟀
叫的次数
(次)与当地温度
之间的关系为 ;
(4)当这种蟋蟀
叫的次数
时,求当时该地的温度.

(1)在这个变化过程中,自变量是 ,因变量是 ;
(2)在当地温度




(3)这种蟋蟀



(4)当这种蟋蟀


17.
阅读下列材料,完成相应的任务:
全等四边形根据全等图形的定义可知:四条边分别相等,四个角也分别相等的两个四边形全等.在“探索三角形全等的条件” 时,我们把两个三角形中“一条边相等” 或“一个角相等”称为一个条件.智慧小组的同学类比“探索三角形全等条件”的方法,探索“四边形全等的条件”,进行了如下思考:如图 1,四边形ABCD和四边形A'B'C'D'中,连接对角线AC,A'C',这样两个四边形全等的问题就转化为“△ABC≌△A'B'C'”与“△ACD ≌ △A 'C 'D '”的问题.若先给定“△ABC≌△A'B'C'”的条件,只要再增加2个条件使“△ACD≌△A'C'D'”即可推出两个四边形中“四条边分别相等,四个角也分别相等”,从而说明两个四边形全等.
按照智慧小组的思路,小明对图1中的四边形ABCD和四边形A'B'C'D'先给出如下条件:AB=A'B',∠B=∠B',BC=B'C',小亮在此基础上又给出“AD=A'D',CD=C'D'”两个条件,他们认为满足这五个条件能得到“四边形ABCD≌四边形A'B'C'D'”.
(1)请根据小明和小亮给出的条件,说明“四边形ABCD≌四边形A'B'C'D'”的理由;
(2)请从下面A,B两题中任选一题作答,我选择______题.

全等四边形根据全等图形的定义可知:四条边分别相等,四个角也分别相等的两个四边形全等.在“探索三角形全等的条件” 时,我们把两个三角形中“一条边相等” 或“一个角相等”称为一个条件.智慧小组的同学类比“探索三角形全等条件”的方法,探索“四边形全等的条件”,进行了如下思考:如图 1,四边形ABCD和四边形A'B'C'D'中,连接对角线AC,A'C',这样两个四边形全等的问题就转化为“△ABC≌△A'B'C'”与“△ACD ≌ △A 'C 'D '”的问题.若先给定“△ABC≌△A'B'C'”的条件,只要再增加2个条件使“△ACD≌△A'C'D'”即可推出两个四边形中“四条边分别相等,四个角也分别相等”,从而说明两个四边形全等.
按照智慧小组的思路,小明对图1中的四边形ABCD和四边形A'B'C'D'先给出如下条件:AB=A'B',∠B=∠B',BC=B'C',小亮在此基础上又给出“AD=A'D',CD=C'D'”两个条件,他们认为满足这五个条件能得到“四边形ABCD≌四边形A'B'C'D'”.
(1)请根据小明和小亮给出的条件,说明“四边形ABCD≌四边形A'B'C'D'”的理由;
(2)请从下面A,B两题中任选一题作答,我选择______题.
A.在材料中“小明所给条件”的基础上,小颖又给出两个条件“AD=A'D',∠BCD=∠B'C'D'”,满足这五个条件_______(填“能”或“不能”)得到“四边形 ABCD≌四边形A'B'C'D'”. |
B.在材料中“小明所给条件”的基础上,再添加两个关于原四边形的条件(要求:不同于小亮的条件),使“四边形ABCD≌四边形A'B'C'D'”,你添加的条件是:①___________;②__________.: |

18.
综合与探究
数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系.
问题情境:
如图1,三角形纸片ABC中,∠ACB=90°,AC=B

数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系.
问题情境:
如图1,三角形纸片ABC中,∠ACB=90°,AC=B
A.将点C放在直线l上,点A,B位于直线l的同侧,过点A作AD⊥l于点 | B.![]() 初步探究: (1)在图1的直线l上取点E,使BE=BC,得到图2.猜想线段CE与AD的数量关系,并说明理由; ![]() 变式拓展: (2)小颖又拿了一张三角形纸片MPN继续进行拼图操作,其中∠MPN=90°,MP=NP.小颖在图 1 的基础上,将三角形纸片MPN的顶点P放在直线l上,点M与点B重合,过点N作NH⊥l于点 H. 请从下面 A,B 两题中任选一题作答,我选择_____题. |
C.如图3,当点N与点M在直线l的异侧时,探究此时线段CP,AD,NH之间的数量关系,并说明理由.![]() | |
D.如图4,当点N与点M在直线l的同侧,且点P在线段CD的中点时,探究此时线段CD,AD,NH之间的数量关系,并说明理由. |

试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(5道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:18
7星难题:0
8星难题:0
9星难题:0