1.单选题- (共5题)
2.填空题- (共5题)
8.
我们规定:满足(1)各边互不相等且均为整数;(2)最短边上的高与最长边上的高的比值为整数k,这样的三角形称为“比高三角形”,其中k叫做“比高系数”.那么周长为13的三角形的“比高系数”k=____.
3.解答题- (共10题)
11.
对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否>25?”为一次操作.

(1)如果操作只进行一次就停止,求x的取值范围;
(2)如果操作进行了四次才停止,求x的取值范围.

(1)如果操作只进行一次就停止,求x的取值范围;
(2)如果操作进行了四次才停止,求x的取值范围.
13.
某班决定购买一些笔记本和文具盒做奖品.已知需要的笔记本数量是文具盒数量的3倍,购买的总费用不低于220元,但不高于250元.
(1)商店内笔记本的售价4元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?
(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?
(3)经过还价,老板同意4元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?
(1)商店内笔记本的售价4元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?
(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?
(3)经过还价,老板同意4元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?
14.
根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高 cm,放入一个大球水面升高 cm;
(2)如果放入大球、小球共10个,且使水面高度不超过50cm,大球最多放入多少个?
(1)放入一个小球水面升高 cm,放入一个大球水面升高 cm;
(2)如果放入大球、小球共10个,且使水面高度不超过50cm,大球最多放入多少个?

17.
如图,AD、AE分别是△ABC的角平分线和高线.
(1) 若∠B=50°,∠C=60°,求∠DAE的度数;
(2)若∠C >∠B,猜想∠DAE与∠C-∠B之间的数量关系,并加以证明.
(1) 若∠B=50°,∠C=60°,求∠DAE的度数;
(2)若∠C >∠B,猜想∠DAE与∠C-∠B之间的数量关系,并加以证明.

18.
已知长度分别为1,2,3,4,5,6的线段各一条.若从中选出n条线段组成线段组,由这一组线段可以拼接成三角形,则称这样的线段组为“三角形线段组”.
回答下列问题:
(1)n的最小值为 .
(2)当n取最小值时,“三角形线段组”共有 组.
(3)若选出的m条线段组成的线段组恰好可以拼接成一个等边三角形,则称这样的线段组为“等边三角形线段组”,比如“等边三角形线段组”{1,2,4,5,6}可以拼接成一个边长为6的等边三角形.请写出另外两组不同的“等边三角形线段组”.
回答下列问题:
(1)n的最小值为 .
(2)当n取最小值时,“三角形线段组”共有 组.
(3)若选出的m条线段组成的线段组恰好可以拼接成一个等边三角形,则称这样的线段组为“等边三角形线段组”,比如“等边三角形线段组”{1,2,4,5,6}可以拼接成一个边长为6的等边三角形.请写出另外两组不同的“等边三角形线段组”.
19.
已知:如图1,在平面直角坐标系中,点A,B,E分别是x轴和y轴上的任意点. BD是∠ABE的平分线,BD的反向延长线与∠OAB的平分线交于点

A. 探究:(1)求∠C的度数. 发现:(2)当点A,点B分别在x轴和y轴的正半轴上移动时,∠C的大小是否发生变化?若不变,请直接写出结论;若发生变化,请求出∠C的变化范围. 应用:(3)如图2在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC外角的平分线相交于点P,求∠P的度数. |

试卷分析
-
【1】题量占比
单选题:(5道)
填空题:(5道)
解答题:(10道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:19
7星难题:0
8星难题:0
9星难题:1