1.单选题- (共10题)
1.
一辆汽车起步后在10s内速度达到80km/h,一列火车起步后达到这个速度需要60s。两车的上述过程均可看作是匀变速直线运动,则关于该过程下列说法正确的是( )
A.汽车的加速度大 |
B.火车的加速度大 |
C.两车通过的位移相同 |
D.汽车通过的位移大 |
2.
在水平低迷附近某一高度处,将一个小球以初速度
水平抛出,小球经时间t落地,落地时的速度大小为v,落地点与抛出点的水平距离为x,不计空气阻力。若将小球从相同位置以
的速度水平抛出,则小球




A.落地的时间变为2t |
B.落地时的速度大小将变为2v |
C.落地的时间仍为t |
D.落地点与抛出点的水平距离仍为x |
3.
计算机硬盘上的磁道为一个个不同半径的同心圆,如图所示,M、N是不同磁道上的两个点,但磁盘转动时,比较M、N两点的运动,下列判断正确的是


A.M、N的线速度大小相等 |
B.M、N的角速度大小相等 |
C.M点的线速度大于N点的线速度 |
D.M点的角速度小于N点的角速度 |
4.
如图所示,一单摆在做简谐运动,下列说法正确的是


A.单摆的幅度越大,振动周期越大 |
B.摆球质量越大,振动周期越大 |
C.若将摆线变短,振动周期将变大 |
D.若将单摆拿到月球上去,振动周期将变大 |
5.
一列简谐横波沿x轴正方向传播,某时刻的波形图如图所示。此时质点K与M处于最大位移处,质点L与N处于平衡位置。下列说法正确的是


A.此时质点L的运动方向沿y轴负方向 |
B.此时质点N的运动方向沿y轴正方向 |
C.此时质点K的加速度为零 |
D.此时质点M的速度为零 |
6.
某区域的电场线分布如图所示,M、N是电场中的两个点,下列判断正确的是。


A.M点的场强大于N点的场强 |
B.M点的电势低于N点的电势 |
C.一个正点电荷在M点的电势能大于在N点的电势能 |
D.一个正点电荷在M点受到的电场力大于在N点受到的电场力 |
7.
在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直,两平行板水平放置。具有不同水平速度的带电粒子射入后发生偏转的情况不同。这种装置能把具有某一特定速度的粒子选择出来,所以叫做速度选择器。现有一束带电粒子以速度v0从左端水平射入,不计粒子重力。下列判断正确的是


A.若粒子带正电且速度![]() |
B.若粒子带负电且速度![]() |
C.若粒子带正电且速度![]() |
D.若粒子带负电且速度![]() |
8.
如图所示,水平面上有两根足够长的光滑平行金属导轨MN和PQ,两导轨间距为l,电阻均可忽略不计。在M和P之间接有阻值为R的定值电阻,导体杆ab电阻为r并导轨接触良好。整个装置处于磁感应强度为B,方向竖直向上的匀强磁场中,现给ab杆一个瞬时冲量,使它获得水平向右的初速度
,下列图中,关于ab杆的速度v、通过电阻R中的电流i、电阻R的电功率P、通过MPabM的磁通量
随时间变化的规律,可能正确的是






A.A | B.B | C.C | D.D |
9.
如图所示,匀强磁场中有a、b两个闭合线圈,它们用同样的导线制成,匝数均为10
匝,半径ra = 2rb。磁场方向与线圈所在平面垂直,磁感应强度B随时间均匀减小。两线圈中产生的感应电动势分别为Ea和Eb,感应电流分别为Ia和Ib。不考虑两线圈间的相互影响。下列说法正确的是

匝,半径ra = 2rb。磁场方向与线圈所在平面垂直,磁感应强度B随时间均匀减小。两线圈中产生的感应电动势分别为Ea和Eb,感应电流分别为Ia和Ib。不考虑两线圈间的相互影响。下列说法正确的是

A.Ea∶Eb = 2∶1,感应电流均沿顺时针方向 |
B.Ea∶Eb = 4∶1,感应电流均沿逆时针方向 |
C.Ia∶Ib = 2∶1,感应电流均沿顺时针方向 |
D.Ia∶Ib= 4∶1,感应电流均沿逆时针方向 |
10.
如图所示,理想变压器接在电压有效值不变的交流电源上,灯泡L1和L2完全相同(阻值不变),R是一个定值电阻。闭合开关S1、S2,两灯泡正常发光,然后断开S2,下列判断正确的是


A.灯泡L1变暗 |
B.电阻R两端的电压变大 |
C.变压器输入功率不变 |
D.变压器输出功率变小 |
2.多选题- (共4题)
11.
如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两物块相连,它们静止在光
滑水平地面上。现给物块m1一个瞬时冲量,使它获得水平向右的速度v0,从此时刻
开始计时,两物块的速度随时间变化的规律如图乙所示。则下列判断正确的是


滑水平地面上。现给物块m1一个瞬时冲量,使它获得水平向右的速度v0,从此时刻
开始计时,两物块的速度随时间变化的规律如图乙所示。则下列判断正确的是


A.t1时刻弹簧长度最短 |
B.t2时刻弹簧恢复原长 |
C.在t1~ t3时间内,弹簧处于压缩状态 |
D.在t2~ t4时间内,弹簧处于拉长状态 |
12.
如图所示,在光滑的水平面上有一辆平板车,人和车都处于静止状态。一个人站在车上用大锤敲打车的左端,在连续的敲打下,下列说法正确的是


A.车左右往复运动 |
B.车持续向右运动 |
C.大锤、人和车租车的系统水平方向动量守恒 |
D.当大锤停止运动时,人和车也停止运动 |
13.
在高能物理研究中,回旋加速器起着重要作用,其工作原理如图所示,D1和D2是两个中空的半圆金属盒,它们之间有一定的电势差。两个半圆盒处于与盒面垂直的匀强磁场中。中央O处的粒子源产生的
粒子,在两盒之间被电场加速,
粒子进入磁场后做匀速圆周运动,忽略
粒子在电场中的加速时间,不考虑相对论效应。下列说法正确的是





A.![]() |
B.![]() |
C.磁感应强度越大,![]() |
D.两盒间电势差越大,![]() |
14.
如图所示,矩形线圈在匀强磁场中绕垂直于磁场的轴
匀速转动,产生的交流电动势
。下列说法正确的是




A.交流电的频率为100Hz |
B.交流电动势的有效值为100V |
C.当线圈转到如图所示的位置时电动势为零 |
D.当线圈转到如图所示的位置时穿过线圈的磁通量为零 |
3.解答题- (共5题)
15.
航空母舰上的起飞跑道由水平跑道和倾斜跑道两部分组成,飞机在发动机的推力作用下,子啊水平和倾斜跑道上滑行。我们可以把这种情景简化为如图所示的模型,水平面AB长度x1=2m,斜面BC长度x2=1m,两部分末端的高度差h=0.5m,一个质量m=2kg的物块,在推力F作用下,从A点开始在水平面和斜面上运动,推力大小恒为F=12N,方向沿着水平方向和平行斜面方向。物块与水平面、斜面间的动摩擦因数均为0.2,
。求:

(1)物块在水平面上运动时的加速度大小a;
(2)物块到达水平面末端B点时的速度大小v;
(3)物块到达斜面末端C点时的动能
。


(1)物块在水平面上运动时的加速度大小a;
(2)物块到达水平面末端B点时的速度大小v;
(3)物块到达斜面末端C点时的动能

16.
我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h处悬停,即相对月球静止。关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v,已知万有引力常量为G,月球半径为R,
,忽略月球自转,求:
(1)月球表面的重力加速度
;
(2)月球的质量M;
(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远。所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R的匀速圆周运动,成为月球的卫星。则这个抛出速度v1至少为多大?

(1)月球表面的重力加速度

(2)月球的质量M;
(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远。所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R的匀速圆周运动,成为月球的卫星。则这个抛出速度v1至少为多大?
17.
游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来,如图甲所示,我国把这种情形抽象为如图乙所示的模型:弧形轨道的下端N与竖直圆轨道平滑相接,P为圆轨道的最高点,使小球(0可视为质点)从弧形轨道上端滚下,小球进入圆轨道下端后沿圆轨道运动。不考虑小球运动所受的摩擦力等阻力。

(1)小球沿弧形轨道运动的过程中,经过某一位置A时动能为
,重力势能为
,经过另一位置B时动能为
,重力势能为
,请根据动能定理和重力做功的特点,证明:小球由A运动到B的过程中,总的机械能保持不变,即
;
(2)已知圆形轨道的半径为R,将一质量为m1的小球,从弧形轨道距地面高h=2.5R处由静止释放。
a请通过分析、计算,说明小球能否通过圆轨道的最高点P;
b如果在弧形轨道的下端N处静置另一个质量为m2的小球。仍将质量为m1的小球,从弧形轨道距地面高h=2.5R处静止释放,两小球将发生弹性正撞。若要使被碰小球碰后能通过圆轨道的最高点P,那么被碰小球的质量m2需要满足什么条件?请通过分析、计算、说明你的理由。


(1)小球沿弧形轨道运动的过程中,经过某一位置A时动能为





(2)已知圆形轨道的半径为R,将一质量为m1的小球,从弧形轨道距地面高h=2.5R处由静止释放。
a请通过分析、计算,说明小球能否通过圆轨道的最高点P;
b如果在弧形轨道的下端N处静置另一个质量为m2的小球。仍将质量为m1的小球,从弧形轨道距地面高h=2.5R处静止释放,两小球将发生弹性正撞。若要使被碰小球碰后能通过圆轨道的最高点P,那么被碰小球的质量m2需要满足什么条件?请通过分析、计算、说明你的理由。
18.
电磁弹射在电磁炮、航天器、舰载机等需要超高速的领域中有着广泛的应用,图1所示为电磁弹射的示意图。为了研究问题的方便,将其简化为如图2所示的模型(俯视图)。发射轨道被简化为两个固定在水平面上、间距为L且相互平行的金属导轨,整个装置处于竖直向下、磁感应强度为B的匀强磁场中。发射导轨的左端为充电电路,已知电源的电动势为E,电容器的电容为C,子弹载体被简化为一根质量为m、长度也为L的金属导体棒,其电阻为r。金属导体棒,其电阻为r。金属导体棒垂直放置于平行金属导轨上,忽略一切摩擦阻力以及导轨和导线的电阻。

(1)发射前,将开关S接a,先对电容器进行充电。
a.求电容器充电结束时所带的电荷量Q;
b.充电过程中电容器两极板间的电压y随电容器所带电荷量q发生变化。请在图3中画出u-q图像;并借助图像求出稳定后电容器储存的能量E0;
(2)电容器充电结束后,将开关b,电容器通过导体棒放电,导体棒由静止开始运动,导体棒离开轨道时发射结束。电容器所释放的能量不能完全转化为金属导体棒的动能,将导体棒离开轨道时的动能与电容器所释放能量的比值定义为能量转化效率。若某次发射结束时,电容器的电量减小为充电结束时的一半,不计放电电流带来的磁场影响,求这次发射过程中的能量转化效率
。

(1)发射前,将开关S接a,先对电容器进行充电。
a.求电容器充电结束时所带的电荷量Q;
b.充电过程中电容器两极板间的电压y随电容器所带电荷量q发生变化。请在图3中画出u-q图像;并借助图像求出稳定后电容器储存的能量E0;
(2)电容器充电结束后,将开关b,电容器通过导体棒放电,导体棒由静止开始运动,导体棒离开轨道时发射结束。电容器所释放的能量不能完全转化为金属导体棒的动能,将导体棒离开轨道时的动能与电容器所释放能量的比值定义为能量转化效率。若某次发射结束时,电容器的电量减小为充电结束时的一半,不计放电电流带来的磁场影响,求这次发射过程中的能量转化效率

试卷分析
-
【1】题量占比
单选题:(10道)
多选题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:19
7星难题:0
8星难题:0
9星难题:0