1.单选题- (共6题)
1.
如图所示,将小球a从地面以初速度v0竖直上抛的同时,将另一相同质量的小球b从距地面h处由静止释放,两球恰在
处相遇(不计空气阻力).则( )



A.两球同时落地 |
B.相遇时两球速度大小相等 |
C.从开始运动到相遇,球a动能的减少量等于球b动能的增加量 |
D.相遇后的任意时刻,重力对球a做功功率和对球b做功功率相等 |
2.
如图,倾角为
的斜面体放在粗糙的水平面上,质量为m的物体A与一劲度系数为k的轻弹簧相连。现用拉力F沿斜面向上拉弹簧,使物体A在光滑斜面上匀速上滑,上滑的高度为h,斜面体始终处于静止状态.在这一过程中( )



A.弹簧的伸长量为![]() | B.拉力F做的功为Fhsin![]() |
C.物体A的机械能增加mgh | D.斜面体受地面的静摩擦力大小等于零 |
4.
如图所示,物体与路面之间的动摩擦因数处处相同且不为零,运动中无碰撞能量损失.DO是水平面,AB是斜面,初速度为v0的物体从D点出发沿DBA滑动到顶点A时速度刚好为零.如果斜面改为AC,让该物体从D点出发沿DCA滑动到A点时速度也刚好为零,则此时物体具有的初速度v( )


A.等于v0 | B.大于v0 | C.小于v0 | D.决定于斜面的倾角 |
5.
如图所示,一固定斜面倾角为30°,一质量为m的小物块自斜面底端以一定的初速度沿斜面向上做匀减速运动,加速度大小等于重力加速度的大小g.物块上升的最大高度为H,则此过程中,物块的()


A.动能损失了2mgH |
B.动能损失了mgH |
C.机械能损失了mgH |
D.机械能损失了![]() |
2.多选题- (共1题)
7.
质量为m1、m2的两物体,静止在光滑的水平面上,质量为m的人站在m1上用恒力F拉绳子,经过一段时间后,两物体的速度大小分别为v1和v2,位移分别为x1和x2,如图所示.则这段时间内此人所做的功的大小等于()


A.Fx2 | B.F(x1+x2) |
C.![]() ![]() | D.![]() |
3.解答题- (共4题)
8.
电动机通过一条绳子吊起质量为8kg的物体。绳的拉力不能超过120N,电动机的功率不能超过1 200W,要将此物体由静止起,用最快的方式将物体吊高90m(已知物体在被吊高90m以前已开始以最大速度匀速上升),所需时间为多少?(g取10 m/s2)
9.
A、B两个木块叠放在竖直轻弹簧上,如图所示,已知mA=mB=1kg,轻弹簧的劲度系数为100N/m.若在木块A上作用一个竖直向上的力F,使木块A由静止开始以2m/s2的加速度竖直向上做匀加速运动.取g=10m/s2.求:

(1)使木块A竖直向上做匀加速运动的过程中,力F的最大值是多少?
(2)若木块A竖直向上做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减小了1.28J,则在这个过程中,力F对木块做的功是多少?

(1)使木块A竖直向上做匀加速运动的过程中,力F的最大值是多少?
(2)若木块A竖直向上做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减小了1.28J,则在这个过程中,力F对木块做的功是多少?
10.
如图所示,左侧为一个半径为R的半球形的碗固定在水平桌面上,碗口水平,O点为球心,碗的内表面及碗口光滑.右侧是一个固定光滑斜面,斜面足够长,倾角θ=30°.一根不可伸长的不计质量的细绳跨在碗口及光滑斜面顶端的光滑定滑轮两端上,线的两端分别系有可视为质点的小球m1和m2,且m1>m2.开始时m1恰在右端碗口水平直径A处,m2在斜面上且距离斜面顶端足够远,此时连接两球的细绳与斜面平行且恰好伸直.当m1由静止释放运动到圆心O的正下方B点时细绳突然断开,不计细绳断开瞬间的能量损失.

(1)求小球m2沿斜面上升的最大距离s;
(2)若已知细绳断开后小球m1沿碗的内侧上升的最大高度为
,求
= .

(1)求小球m2沿斜面上升的最大距离s;
(2)若已知细绳断开后小球m1沿碗的内侧上升的最大高度为


11.
一列车的质量是5.0×105 kg,在平直的轨道上以额定功率3 000 kW加速行驶,当速度由10 m/s加速到所能达到的最大速率30 m/s时,共用了2 min,则在这段时间内列车前进的距离是多少?
4.实验题- (共1题)
试卷分析
-
【1】题量占比
单选题:(6道)
多选题:(1道)
解答题:(4道)
实验题:(1道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:10
7星难题:0
8星难题:2
9星难题:0