1.单选题- (共5题)
1.
中国药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项,已知显微镜下某种疟原虫平均长度为0.0000015米,该长度用科学记数法可表示为( )
A.![]() | B.![]() | C.![]() | D.![]() |
2.
如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是( )
B.
C.
D. 




2.选择题- (共1题)
6.
为了比较酶与无机催化剂的催化效率,某科学兴趣小组进行了如下实验:
①取2支洁净的试管,分别编上1号和2号,向2支试管中分别加入2毫升体积分数为3%的过氧化氢溶液.
②向1号试管中滴入2滴质量分数为3.5%的FeCl3溶液,向2号试管中滴入2滴质量分数为20%的猪肝研磨液.
③观察2支试管内产生气泡情况.
④2~3分钟后,将点燃的卫生香分别放入2支试管内液面的上方,发现2号试管的卫生棉燃烧得更旺.
查阅资料获知:每滴质量分数为3.5%的FeCl3溶液中Fe3+微粒数大约是每滴质量分数为20%的猪肝研磨液中过氧化氢酶微粒数的25万倍,FeCl3溶液中起催化作用的是Fe3+.
请回答:
3.填空题- (共6题)
7.
1955年,印度数学家卡普耶卡(
)研究了对四位自然数的一种变换:任给出四位数
,用
的四个数字由大到小重新排列成一个四位数
,再减去它的反序数
(即将
的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数
,然后继续对
重复上述变换,得数
,…,如此进行下去,卡普耶卡发现,无论
是多大的四位数,只要四个数字不全相同,最多进行
次上述变换,就会出现变换前后相同的四位数
,这个数称为
变换的核.则四位数9631的
变换的核为______.














4.解答题- (共7题)
14.
问题:将边长为
的正三角形的三条边分别
等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图①,连接边长为2的正三角形三条边的中点,从上往下看:
边长为1的正三角形,第一层有1个,第二层有3个,共有
个;
边长为2的正三角形一共有1个.

探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有
个;边长为2的正三角形共有
个.

探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)

结论:将边长为
的正三角形的三条边分别
等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)
应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.


探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图①,连接边长为2的正三角形三条边的中点,从上往下看:
边长为1的正三角形,第一层有1个,第二层有3个,共有

边长为2的正三角形一共有1个.

探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有



探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
(仿照上述方法,写出探究过程)

结论:将边长为


(仿照上述方法,写出探究过程)
应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.
15.
如图,在边长为
的正方形四个角上,分别剪去大小相等的等腰直角三角形,当三角形的直角边由小变大时,阴影部分的面积也随之发生变化,它们的变化情况如下:

(1)在这个变化过程中,自变量、因变量各是什么?
(2)请将上述表格补充完整;
(3)当等腰直角三角形的直角边长由
增加到
时,阴影部分的面积是怎样变化的?
(4)设等腰直角三角形的直角边长为
,图中阴影部分的面积为
,写出
与
的关系式.

三角形的直角边长/![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
阴影部分的面积/![]() | 398 | 392 | 382 | 368 | 350 | | 302 | 272 | | 200 |

(1)在这个变化过程中,自变量、因变量各是什么?
(2)请将上述表格补充完整;
(3)当等腰直角三角形的直角边长由


(4)设等腰直角三角形的直角边长为




18.
如图,在
中,
为
的中点,
,
.动点
从点
出发,沿
方向以
的速度向点
运动;同时动点
从点
出发,沿
方向以
的速度向点
运动,运动时间是
秒.

(1)用含
的代数式表示
的长度.
(2)在运动过程中,是否存在某一时刻
,使点
位于线段
的垂直平分线上?若存在,求出
的值;若不存在,请说明理由.
(3)是否存在某一时刻
,使
?若存在,求出
的值;若不存在,请说明理由.
(4)是否存在某一时刻
,使
?若存在,求出
的值;若不存在,请说明理由.

















(1)用含


(2)在运动过程中,是否存在某一时刻




(3)是否存在某一时刻



(4)是否存在某一时刻



试卷分析
-
【1】题量占比
单选题:(5道)
选择题:(1道)
填空题:(6道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:3
7星难题:0
8星难题:2
9星难题:13