1.单选题- (共2题)
1.
如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中( )


A.PQ中电流先增大后减小 |
B.PQ两端电压先减小后增大 |
C.PQ上拉力的功率先减小后增大 |
D.线框消耗的电功率先减小后增大 |
2.
下列叙述中正确的是( )
A.液体中悬浮微粒的布朗运动是做无规则运动的液体分子撞击微粒而引起的 |
B.布朗运动是指在显微镜下观察到的组成悬浮颗粒的固体分子的无规则运动 |
C.悬浮在液体中的微粒越小,受到液体分子的撞击就越容易平衡 |
D.布朗运动图示中不规则折线表示的是液体分子的运动轨迹 |
2.选择题- (共1题)
3.多选题- (共1题)
4.
两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面。质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R。整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中。当ab杆在平行于水平导轨的拉力F作用下以速度v1沿导轨匀速运动时,cd杆也正好以速度v2向下匀速运动。重力加速度为g。以下说法正确的是( )


A.ab杆所受拉力F的大小为μmg+![]() |
B.cd杆所受摩擦力为零 |
C.回路中的电流强度为![]() |
D.μ与v1大小的关系为μ=![]() |
4.解答题- (共3题)
5.
如图(1)所示,两足够长平行光滑的金属导轨MN、PQ相距为0.8m,导轨平面与水平面夹角为α,导轨电阻不计.有一个匀强磁场垂直导轨平面斜向上,长为1m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒的质量为0.1kg、与导轨接触端间电阻为1Ω.两金属导轨的上端连接右端电路,电路中R2为一电阻箱.已知灯泡的电阻RL=4Ω,定值电阻R1=2Ω,调节电阻箱使R2=12Ω,重力加速度g=10m/s2.将电键S打开,金属棒由静止释放,1s后闭合电键,如图(2)所示为金属棒的速度随时间变化的图象.求:

(1)斜面倾角α及磁感应强度B的大小;
(2)若金属棒下滑距离为60m时速度恰达到最大,求金属棒由静止开始下滑100m的过程中,整个电路产生的电热;
(3)改变电阻箱R2的值,当R2为何值时,金属棒匀速下滑时R2消耗的功率最大;消耗的最大功率为多少?

(1)斜面倾角α及磁感应强度B的大小;
(2)若金属棒下滑距离为60m时速度恰达到最大,求金属棒由静止开始下滑100m的过程中,整个电路产生的电热;
(3)改变电阻箱R2的值,当R2为何值时,金属棒匀速下滑时R2消耗的功率最大;消耗的最大功率为多少?
6.
如图所示,在竖直面内有一个光滑弧形轨道,其末端水平,且与处于同一竖直面内光滑圆形轨道的最低端相切,并平滑连接.
、
两滑块(可视为质点)用轻细绳拴接在一起,在它们中间夹住一个被压缩的微小轻质弹簧.两滑块从弧形轨道上的某一高度由静止滑下,当两滑块刚滑入圆形轨道最低点时拴接两滑块的绳突然断开,弹簧迅速将两滑块弹开,其中前面的滑块
沿圆形轨道运动恰能通过轨道最高点.已知圆形轨道的半径
,滑块
的质量
.滑块
的质量
,两滑块开始下滑时距圆形轨道底端的高度
,重力加速度
取
,空气阻力可忽略不计.求:

(1)
、
两滑块一起运动到圆形轨道最低点时速度的大小.
(2)滑块
被弹簧弹开时的速度大小.
(3)弹簧在将两滑块弹开的过程中释放的弹性势能.












(1)


(2)滑块

(3)弹簧在将两滑块弹开的过程中释放的弹性势能.
试卷分析
-
【1】题量占比
单选题:(2道)
选择题:(1道)
多选题:(1道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:3
7星难题:0
8星难题:1
9星难题:0