1.单选题- (共8题)
3.
长方形的周长为24cm,其中一边为xcm(其中x>0),面积为ycm2,则这样的长方形中y与x的关系可以写为( )
A.y=x2 | B.y=12﹣x2 | C.y=(12﹣x)•x | D.y=2(12﹣x) |
2.选择题- (共3题)
3.填空题- (共6题)
4.解答题- (共7题)
19.
一根长60厘米的弹簧,一端固定.如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长1.5厘米.
(1)正常情况下,当挂着x千克的物体时,弹簧的L长度是多少?
(2)利用(1)的结果完成下表:
(3)当弹簧挂上物体后弹簧的长度为78厘米时,弹簧上挂的物体重多少千克?
(1)正常情况下,当挂着x千克的物体时,弹簧的L长度是多少?
(2)利用(1)的结果完成下表:
物体的质量x(千克) | 1 | 2 | 3 | 4 |
弹簧的长度L(厘米) | | | | |
20.
把下面的推理过程补充完整,并在括号内注明理由.如图,点B、D在线段AE上,BC∥EF,AD=BE,BC=EF,试说明:∠C=∠F;AC∥DF.

解:∵AD=BE(已知)
∴AD+DB=DB+BE(________)
即AB=DE
∵BC∥EF(已知)
∴∠ABC=∠________(________)
又∵BC=EF(已知)
∴△ABC≌△DEF(________)
∴∠C=∠F,∠A=∠FDE(________)
∴AC∥DF(________)

解:∵AD=BE(已知)
∴AD+DB=DB+BE(________)
即AB=DE
∵BC∥EF(已知)
∴∠ABC=∠________(________)
又∵BC=EF(已知)
∴△ABC≌△DEF(________)
∴∠C=∠F,∠A=∠FDE(________)
∴AC∥DF(________)
23.
乘法公式的探究及应用.

(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);
(3)比较图1、图2阴影部分的面积,可以得到公式 ;
(4)运用你所得到的公式,计算下列各题:
①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).

(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);
(3)比较图1、图2阴影部分的面积,可以得到公式 ;
(4)运用你所得到的公式,计算下列各题:
①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).
试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(3道)
填空题:(6道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:7
7星难题:0
8星难题:1
9星难题:12