1.单选题- (共4题)
1.
如图,四边形ABCD是边长为2cm的正方形,动点P在ABCD的边上沿A→B→C→D的路径以1cm/s的速度运动(点P不与A,D重合)。在这个运动过程中,△APD的面积S(cm2)随时间t(s)的变化关系用图象表示,正确的为( )


A.![]() | B.![]() | C.![]() | D.![]() |
3.
如图,△ABC的三边AB、BC、AC的长分别12,18,24,O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC=( )


A.1:1:1 | B.1:2:3 | C.2:3:4 | D.3:4:5 |
2.填空题- (共6题)
7.
如图,△ABC和△BDE都是等边三角形,A、B、D三点共线.下列结论:①AE=CD;②BF=BG;③△BFG是等边三角形;④∠AHC=60°.其中正确的有__________(只填序号).

10.
在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高__米.

3.解答题- (共7题)
11.
如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE=90°,AD=A

A. (1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________ ②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由. (2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动。探究:当∠ACB多少度时,CE⊥BC?请说明理由. |

试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(6道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:5
7星难题:0
8星难题:7
9星难题:4