1.单选题- (共6题)
2.
2013年6月20日,航天员王亚平在运行中的“天宫一号”内做了如图实验:细线的一端固定,另一端系一小球,在最低点给小球一个初速度,小球能在竖直平面内绕定点做匀速圆周运动。若将此装置带回地球,仍在最低点给小球相同初速度,则在竖直平面内


A.小球仍能做匀速圆周运动 |
B.小球不可能做匀速圆周运动 |
C.小球一定能做完整的圆周运动 |
D.小球一定不能做完整的圆周运动 |
3.
如图所示,A是静止在赤道上的物体,随地球自转而做匀速圆周运动;B、C是同一平面内两颗人造卫星,B位于离地高度等于地球半径的圆形轨道上,C是地球同步卫星。已知第一宇宙速度为
,物体A和卫星B、C的线速度大小分别为
、
、
,周期大小分别为
、
、
,向心加速度大小分别为
、
、
则下列关系正确的是












A.![]() | B.![]() |
C.![]() | D.![]() |
4.
如图所示,光滑水平面OB与足够长粗糙斜面BC交于B点。轻弹簧左端固定于竖直墙面,现用质量为m1的滑块压缩弹簧至D点,然后由静止释放,滑块脱离弹簧后经B点滑上斜面,上升到最大高度,并静止在斜面上。不计滑块在B点的机械能损失,换用材料相同,质量为m2的滑块(m2>m1)压缩弹簧至同一点D后,重复上述过程,下列说法正确的是( )


A.两滑块到达B点时速度相同 |
B.两滑块沿斜面上升的最大高度相同 |
C.两滑块上升到最高点的过程中克服重力做的功不相同 |
D.两滑块上升到最高点的过程中机械能损失相同 |
5.
假设在真空玻璃盒内有一固定于地面上空附近的N极磁单极子,其磁场分布与正点电荷电场分布相似,周围磁感线呈均匀辐射式分布如图所示。一质量为m、电荷量为q的带电粒子正在该磁单极子上方附近做速度大小为v、半径为R的匀速圆周运动,其轨迹如虚线所示,轨迹平面为水平面。(已知地球表面的重力加速度大小为g,不考虑地磁场的影响),则( )


A.带电粒子一定带负电 |
B.若带电粒子带正电,从轨迹上方朝下看,粒子沿逆时针方向运动 |
C.带电粒子做匀速圆周运动的向心力仅由洛伦兹力提供 |
D.带电粒子运动的圆周上各处的磁感应强度大小为![]() |
6.
某交流发电机产生的感应电动势与时间的关系如图所示,下列说法正确的是 ( )


A.t=0时刻发电机的转动线圈位于中性面 |
B.在1s内发电机的线圈绕轴转动50圈 |
C.将此交流电接到匝数比是1∶10的升压变压器上,副线圈的电压为2200![]() |
D.将此交流电与耐压值是220V的电容器相连,电容器不会被击穿 |
2.选择题- (共2题)
3.多选题- (共3题)
9.
在光滑的水平面上,质量为m的子弹以初速度v0射击质量为M的木块,最终子弹未能射穿木块,射入的深度为d,木块在加速运动中的位移为s。则以下说法正确的是


A.子弹动能的亏损大于系统动能的亏损 |
B.子弹动量变化量的大小等于木块动量变化量的大小 |
C.摩擦力对M做的功一定等于摩擦力对m做的功 |
D.位移s一定大于深度d |
10.
如图所示,PQ、MN是放置在水平面内的光滑导轨,GH是长度为L、电阻为r的导体棒,其中点与一端固定的轻弹簧连接,轻弹簧的劲度系数为k。导体棒处在方向向下、磁感应强度为B的匀强磁场中。图中直流电源的电动势为E、内阻不计,电容器的电容为C。闭合开关,待电路稳定后,下列选项正确的是


A.导体棒中电流为![]() |
B.轻弹簧的长度减小![]() |
C.轻弹簧的长度增加![]() |
D.电容器带电荷量为![]() |
11.
在一个很小的矩形半导体薄片上,制作四个电极E、F、M、N,做成了一个霍尔元件,在E、F间通入恒定电流I,同时外加与薄片垂直的磁场B,M、N间的电压为UH.已知半导体薄片中的载流子为正电荷,电流与磁场的方向如图所示,下列说法正确的有( )


A.N板电势高于M板电势 |
B.磁感应强度越大,MN间电势差越大 |
C.将磁场方向变为与薄片的上、下表面平行,UH不变 |
D.将磁场和电流分别反向,N板电势低于M板电势 |
4.填空题- (共1题)
12.
气垫导轨是一种常用的实验仪器,它利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,此时滑块在导轨上的运动可视为没有摩擦。现利用气垫导轨来研究功能关系。如图甲所示,在气垫导轨的左端固定一轻质弹簧,轨道上有滑块A紧靠弹簧但不连接,滑块的质量为m,重力加速度为g。

(1)用游标卡尺测出滑块A上的挡光片的宽度,读数如图乙所示,则宽度d=______cm;
(2)利用该装置研究弹簧对滑块做功的大小;某同学打开气源,调节装置,使滑块可以静止悬浮在导轨上,然后用力将滑块A压紧到P点,释放后,滑块A上的挡光片通过光电门的时间为△t,则弹簧对滑块所做的功为____________。(用题中所给字母表示)
(3)利用该装置测量滑块与导轨间的动摩擦因数;关闭气源,仍将滑块A由P点释放,当光电门到P点的距离为x时,测出滑块A上的挡光片通过光电门的时间为t,移动光电门,测出多组数据(滑块都能通过光电门),并绘出
图象。如图丙所示,已知该图线斜率的绝对值为k,则滑块与导轨间的滑动摩擦因数为____________。

(1)用游标卡尺测出滑块A上的挡光片的宽度,读数如图乙所示,则宽度d=______cm;
(2)利用该装置研究弹簧对滑块做功的大小;某同学打开气源,调节装置,使滑块可以静止悬浮在导轨上,然后用力将滑块A压紧到P点,释放后,滑块A上的挡光片通过光电门的时间为△t,则弹簧对滑块所做的功为____________。(用题中所给字母表示)
(3)利用该装置测量滑块与导轨间的动摩擦因数;关闭气源,仍将滑块A由P点释放,当光电门到P点的距离为x时,测出滑块A上的挡光片通过光电门的时间为t,移动光电门,测出多组数据(滑块都能通过光电门),并绘出

5.解答题- (共3题)
13.
如图甲所示,一倾角为37°的传送带以恒定速度运行。现将一质量m=1 kg的物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8:求:

(1)物体与传送带间的动摩擦因数;
(2)0-8s内物体运动的位移;
(3)0-8s内物体机械能的增加量。

(1)物体与传送带间的动摩擦因数;
(2)0-8s内物体运动的位移;
(3)0-8s内物体机械能的增加量。
14.
如图所示,在xOy平面上,直线OM与x轴正方向夹角为
,直线OM左侧存在平行y轴的匀强电场,方向沿y轴负方向。直线OM右侧存在垂直xOy平面向里的磁感应强度为B的匀强磁场。一带电量为q,质量为m带正电的粒子
忽略重力)从原点O沿x轴正方向以速度
射入磁场。此后,粒子穿过磁场与电场的边界三次,恰好从电场中回到原点
。(粒子通过边界时,其运动不受边界的影响)求:

(1)粒子第一次在磁场中做圆周运动的半径;
(2)匀强电场的电场强度;
(3)粒子从O点射出至回到O点所用的时间。





(1)粒子第一次在磁场中做圆周运动的半径;
(2)匀强电场的电场强度;
(3)粒子从O点射出至回到O点所用的时间。
15.
某校航模兴趣小组设计了一个飞行器减速系统,有摩擦阻力、电磁阻尼、空气阻力系统组成,装置如图所示,匝数N=100匝、面积S=
、电阻r=0.1Ω的线圈内有方向垂直于线圈平面向上的随时间均匀增加的磁场
,其变化率k=1.0T/s。线圈通过电子开关S连接两根相互平行、间距L=0.5m的水平金属导轨,右端连接R=0.2Ω的电阻,其余轨道电阻不计。在导轨间的区域1中存在水平向右、长度为d=8m的匀强磁场,磁感应强度为B2,其大小可调;在区域2中存在长度足够长、大小为0.4T、方向垂直纸面向里的匀强磁场
。飞行器可在轨道间运动,其下方固定有一根长为L=0.5m、电阻也为R=0.2Ω的导体棒AB,与导轨良好接触,飞行器(含导体棒)总质量m=0.5kg。在电子开关闭合的同时,飞行器以
的初速度从图示位置开始运动,已知导体棒在区域1中运动时与轨道间的动摩擦因数
=0.5,g=10 m/s2,其余各处摩擦均不计。

(1)飞行器开始运动时,求AB棒两端的电压U;
(2)为使导体棒AB能通过磁场区域1,求磁感应强度
应满足的条件;
(3)若导体棒进入磁场区域2左边界PQ时,会触发电子开关使S断开,同时飞行器会打开减速伞,已知飞行器受到的空气阻力f与运动速度v成正比,且f=ηv(η=0.4kg/s)。当
取何值时,导体棒在刚进入PQ区域时的加速度最大,求此加速度的最大值。






(1)飞行器开始运动时,求AB棒两端的电压U;
(2)为使导体棒AB能通过磁场区域1,求磁感应强度

(3)若导体棒进入磁场区域2左边界PQ时,会触发电子开关使S断开,同时飞行器会打开减速伞,已知飞行器受到的空气阻力f与运动速度v成正比,且f=ηv(η=0.4kg/s)。当

试卷分析
-
【1】题量占比
单选题:(6道)
选择题:(2道)
多选题:(3道)
填空题:(1道)
解答题:(3道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:8
7星难题:0
8星难题:3
9星难题:0