1.单选题- (共6题)
1.
在物理学的发展过程中,科学家们创造出了许多物理学研究方法,以下关于所用物理学研究方法的叙述不正确的是
A.加速度、速度都是采取比值法定义的物理量 |
B.在探究共点力的合成时用到了等效替代的思想方法 |
C.牛顿提出了万有引力定律,并没有通过实验测出万有引力常量的数值 |
D.牛顿第一定律是利用逻辑思维对事实进行分析的产物,可以用实验直接验证 |
2.
如图所示,质量为m的两个小球A、
可视为质点
固定在细杆的两端,将其放入光滑的半球形碗中,杆的长度等于碗的半径,当杆与两球组成的系统处于平衡状态时,杆对小球A的作用力为




A.![]() | B.![]() | C.![]() | D.2mg |
3.
“套圈圈”是老少皆宜的游戏,如图,大人和小孩在同一竖直线上的不同高度处分别以水平速度v1、v2抛出铁丝圈,都能套中地面上的同一目标。设铁丝圈在空中运动时间分别为t1、t2,则( )


A.v1=v2 | B.v1>v2 | C.t1>t2 | D.t1=t2 |
4.
如图所示, a、b、c是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是( )


A.b、c的线速度大小相等且大于a的线速度 |
B.b、c的向心加速度相等且小于a的向心加速度 |
C.c加速可追上同一轨道上的b,b减速可等候同一轨道上的c |
D.若卫星由于某原因,轨道半径缓慢减小,则其周期减小 |
5.
在如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在其中,将弹簧压缩到最短.若将子弹、木块和弹簧合在一起作为系统,则此系统在从子弹开始射入到弹簧被压缩至最短的整个过程中()


A.动量守恒,机械能守恒 | B.动量守恒,机械能不守恒 |
C.动量不守恒,机械能不守恒 | D.动量不守恒,机械能守恒 |
6.
带有1/4光滑圆弧轨道、质量为m的滑车静止置于光滑水平面上,如图所示。一质量也为m的小球以速度v0水平冲上滑车,当小球上滑再返回,并脱离滑车时,以下说法正确的是( )


A.整个过程,小球和滑车组成的系统动量守恒 |
B.脱离滑车后小球可能沿水平方向向左做平抛运动 |
C.脱离滑车后小球一定做自由落体运动 |
D.脱离滑车后小球可能水平向右做平抛运动 |
2.多选题- (共5题)
7.
如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4m,最低点处有一小球(半径比r小很多),现给小球以水平向右的初速度v0,则要使小球不脱离圆轨道运动, v0应当满足(g=10m/s 2):


A.![]() | B.![]() |
C.v0≥4 m/s | D.![]() |
8.
北斗导航系统又被称为“双星定位系统”,具有导航、定位等功能.“北斗”系统中两颗工作卫星1和2均绕地心O做匀速圆周运动,轨道半径均为r,某时刻两颗工作卫星分别位于轨道上的A、B两位置,如图5所示.若卫星均顺时针运行,地球表面处的重力加速度为g,地球半径为R,不计卫星间的相互作用力.以下判断正确的是( ).


A.两颗卫星的向心加速度大小相等,均为![]() |
B.两颗卫星所受的向心力大小一定相等 |
C.卫星1由位置A运动到位置B所需的时间可能为![]() |
D.如果要使卫星1追上卫星2,一定要使卫星1加速 |
9.
如图所示,水平光滑长杆上套有小物块
,细线跨过位于
点的轻质光滑定滑轮,一端连接
,另一端悬挂小物块
,物块
、
质量相等。
为
点正下方杆上的点,滑轮到杆的距离
. 开始时
位于
点,
与水平方向的夹角为30°。现将
、
静止释放。则下列说法正确的是( )
















A.物块![]() ![]() ![]() |
B.物块![]() ![]() ![]() |
C.物块![]() ![]() |
D.在物块![]() ![]() ![]() ![]() ![]() |
10.
如图所示,劲度系数为k的轻质弹簧,一端系在竖直放置、半径为R的光滑圆环顶点P,另一个端连接一套在圆环上且质量为m的小球。开始时小球位于A点,此时弹簧处于原长且与竖直方向的夹角为45°,之后小球由静止沿圆环下滑,小球运动到最低点B时的速率为v,此时小球与圆环之间的压力恰好为零,已知重力加速度为g。下列分析正确的是( )


A.轻质弹簧的原长为R |
B.小球过B点时,弹簧的弹力为![]() |
C.小球从A到B的过程中,重力势能转化为弹簧的弹性势能和小球的动能 |
D.小球运动到B点时,弹簧的弹性势能为![]() |
11.
质量为m的物体,以v0的初速度沿斜面上滑,到达最高点后又返回原处时的速度为v1,且v1=0.5v0,则( )
A.上滑过程中重力的冲量比下滑时小 |
B.上滑和下滑的过程中支持力的冲量都等于零 |
C.在整个过程中合力的冲量大小为![]() |
D.整个过程中物体动量的变化量为![]() |
3.解答题- (共1题)
12.
如图所示,一光滑水平桌面AB与一半径为R的光滑半圆形轨道相切于C点,且两者固定不动.一长为
的细绳,一端固定于
点,另一端系一个质量
为
的小球.当小球
在竖直方向静止时,球对水平桌面的作用力刚好为零.现将小球
提起使细绳处于水平位置时无初速释放.当小球
摆至最低点时,细绳恰好被拉断,此时小球
恰好与放在桌面上的质量
为
的小球发生弹性正碰,
将沿半圆形轨道运动.两小球均可视为质点,取
.求:

(1)细绳所能承受的最大拉力为多大?
(2)
在半圆形轨道最低点C点的速度为多大?
(3)为了保证
在半圆形轨道中运动时不脱离轨道,试讨论半圆形轨道的半径R应该满足的条件.













(1)细绳所能承受的最大拉力为多大?
(2)

(3)为了保证

4.实验题- (共2题)
13.
在如图所示的光滑水平面上,小明站在静止的小车上用力向右推静止的木箱,木箱离开手以5m/s的速度向右匀速运动,运动一段时间后与竖直墙壁发生弹性碰撞,反弹回来后被小明接住.已知木箱的质
量为30kg,人与车的质量为50kg.求:

①推出木箱后小明和小车一起运动的速度大小;
②小明接住木箱后三者一起运动,在接木箱过程中系统损失的能量.
量为30kg,人与车的质量为50kg.求:

①推出木箱后小明和小车一起运动的速度大小;
②小明接住木箱后三者一起运动,在接木箱过程中系统损失的能量.
14.
在用打点计时器验证机械能守恒定律的实验中,质量m=1.00 kg的重物自由下落,打点计时器在纸带上打出一系列点.如图1所示为选取的一条符合实验要求的纸带,O为第一个点,A、B、C为从合适位置开始选取的三个连续点(其他点未画出).已知打点计时器每隔0.02 s打一次点,当地的重力加速度g=9.80 m/s2. 那么:

(1)纸带的________(选填“左”或“右”)端与重物相连;
(2)根据图上所得的数据,应取图中O点和________点来验证机械能守恒定律;
(3)从O点到所取点,重物重力势能减少量Ep=________J,该所取点的速度大小为________m/s;(结果取3位有效数字)
(4)如图2,一位同学按如下方法判断机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度为v,描绘v2-h图象,若图象是一条过原点的直线,则重物下落过程中机械能守恒,该同学的判断依据________.(填“正确”或“不正确)

(1)纸带的________(选填“左”或“右”)端与重物相连;
(2)根据图上所得的数据,应取图中O点和________点来验证机械能守恒定律;
(3)从O点到所取点,重物重力势能减少量Ep=________J,该所取点的速度大小为________m/s;(结果取3位有效数字)
(4)如图2,一位同学按如下方法判断机械能是否守恒:在纸带上选取多个计数点,测量它们到起始点O的距离h,计算对应计数点的重物速度为v,描绘v2-h图象,若图象是一条过原点的直线,则重物下落过程中机械能守恒,该同学的判断依据________.(填“正确”或“不正确)
试卷分析
-
【1】题量占比
单选题:(6道)
多选题:(5道)
解答题:(1道)
实验题:(2道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:8
7星难题:0
8星难题:4
9星难题:1