1.单选题- (共3题)
2.
如图,在粗糙的水平面上,静置一矩形木块,木块由A、B两部分组成,A的质量是B的3倍,两部分接触面竖直且光滑,夹角θ=30°,现用一与侧面垂直的水平力F推着B木块贴着A匀速运动,A木块依然保持静止,则A受到的摩擦力大小与B受到的摩擦力大小之比为()

A. 1 B.
C.
D. 

A. 1 B.



3.
如图所示,在直角坐标系中(10,0),(0,10)两处分别固定两个等量正点电荷q=1×10-7 C,在(0,-10),(-10,0)两处分别固定两个等量负点电荷-q=-1×10-7 C,已知静电力常量k=9.0×109 N·m2/C2.取无穷远处电势为0,下列判断正确的是( )


A.O点电势为零,场强E=9![]() |
B.将一个正电荷从(-5,5)点移动到(5,-5)点电场力做负功 |
C.将一个正电荷从(5,5)点移动到(-5,-5)点电场力做正功 |
D.(5,5)点和(-5,-5)点电场强度等大、反向 |
2.多选题- (共4题)
4.
带滑轮的平板C放在水平桌面上,小车A通过绕过滑轮的轻绳与物体B相连,如图所示。A、C间及绳与滑轮间摩擦不计,C与桌面间动摩擦因数为μ ,最大静摩擦力等于滑动摩擦力,A、C质量均为m,小车A运动时平板C保持静止,物体B的质量为M可改变,则下列说法正确的是()


A.当M=m时,C受到桌面的摩擦力大小为mg |
B.当M=m时,C受到桌面的摩擦力大小为![]() |
C.在M改变时,保持C静止的μ必须满足![]() |
D.无论μ值为多大,C都会保持静止 |
5.
如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,该系统是由一颗白矮星和它的类日伴星组成的双星系统,图片下面的亮点为白矮星,上面的部分为类日伴星(中央的最亮的为类似太阳的天体)。由于白矮星不停地吸收由类日伴星抛出的物质致使其质量不断增加,科学家预计这颗白矮星在不到1000万年的时间内会完全“爆炸”,从而变成一颗超新星。现假设类日伴星所释放的物质被白矮星全部吸收,并且两星之间的距离在一段时间内不变,两星球的总质量不变,不考虑其它星球对该“罗盘座T星”系统的作用,则下列说法正确的是()


A.两星之间的万有引力不变 |
B.两星的运动周期不变 |
C.类日伴星的轨道半径减小 |
D.白矮星的线速度变小 |
6.
两列简谐横波的振幅都是10 cm,传播速度大小相同.实线波的频率为2 Hz,沿x轴正方向传播;虚线波沿x轴负方向传播.某时刻两列波在如图所示区域相遇,则 .(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分)

E. 从图示时刻起再经过0.25 s,平衡位置为x="5" m处的质点的位移y<0

A.实线波和虚线波的频率之比为3∶2 |
B.在相遇区域会发生干涉现象 |
C.平衡位置为x="6" m处的质点此刻速度为零 |
D.平衡位置为x="8.5" m处的质点此刻沿y轴负方向运动 |
7.
如图所示,ABC为竖直平面内的光滑绝缘轨道,其中AB为倾斜直轨道,BC为与AB相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里。质量相同的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电。现将三个小球在轨道AB上分别从不同高度处由静止释放,都恰好通过圆形轨道的最高点,则

A. 经过最高点时,三个小球的速度相等
B. 经过最高点时,甲球的速度最小
C. 甲球的释放位置比乙球的高
D. 运动过程中三个小球的机械能均保持不变

A. 经过最高点时,三个小球的速度相等
B. 经过最高点时,甲球的速度最小
C. 甲球的释放位置比乙球的高
D. 运动过程中三个小球的机械能均保持不变
3.解答题- (共2题)
8.
某同学设计了一个电磁推动加喷气推动的火箭发射装置,如图所示.竖直固定在绝缘底座上的两根长直光滑导轨,间距为L.导轨间加有垂直导轨平面向里的匀强磁场B.绝缘火箭支撑在导轨间,总质量为m,其中燃料质量为m′,燃料室中的金属棒EF电阻为R,并通过电刷与电阻可忽略的导轨良好接触.引燃火箭下方的推进剂,迅速推动刚性金属棒CD(电阻可忽略且和导轨接触良好)向上运动,当回路CEFDC面积减少量达到最大值ΔS,用时Δt,此过程激励出强电流,产生电磁推力加速火箭.在Δt时间内,电阻R产生的焦耳热使燃料燃烧形成高温高压气体,当燃烧室下方的可控喷气孔打开后,喷出燃气进一步加速火箭.

(1)求回路在Δt时间内感应电动势的平均值及通过金属棒EF的电荷量,并判断金属棒EF中的感应电流方向;
(2)经Δt时间火箭恰好脱离导轨,求火箭脱离时的速度v0;(不计空气阻力)
(3)火箭脱离导轨时,喷气孔打开,在极短的时间内喷射出质量为m′的燃气,喷出的燃气相对喷气前火箭的速度为u,求喷气后火箭增加的速度Δv。(提示:可选喷气前的火箭为参考系)

(1)求回路在Δt时间内感应电动势的平均值及通过金属棒EF的电荷量,并判断金属棒EF中的感应电流方向;
(2)经Δt时间火箭恰好脱离导轨,求火箭脱离时的速度v0;(不计空气阻力)
(3)火箭脱离导轨时,喷气孔打开,在极短的时间内喷射出质量为m′的燃气,喷出的燃气相对喷气前火箭的速度为u,求喷气后火箭增加的速度Δv。(提示:可选喷气前的火箭为参考系)
9.
如图所示,虚线框内为某种电磁缓冲车的结构示意图,其主要部件为缓冲滑块 K和质量为m的缓冲车厢。在缓冲车的底板上,沿车的轴线固定着两个光滑水平绝缘导轨PQ、MN。缓冲车的底部,安装电磁铁(图中未画出),能产生垂直于导轨平面的匀强磁场,磁场的磁感应强度为B。导轨内的缓冲滑块K由高强度绝缘材料制成,滑块K上绕有闭合矩形线圈abcd,线圈的总电阻为R,匝数为n,ab边长为L。假设缓冲车以速度v0与障碍物C碰撞后,滑块K立即停下,此后线圈与轨道的磁场作用力使缓冲车厢减速运动,从而实现缓冲,一切摩擦阻力不计。

(1)求滑块K的线圈中最大感应电动势的大小;
(2)若缓冲车厢向前移动距离L后速度为零,则此过程线圈abcd中通过的电量和产生的焦耳热各是多少?
(3)若缓冲车以某一速度
(未知)与障碍物C碰撞后,滑块K立即停下,缓冲车厢所受的最大水平磁场力为Fm。缓冲车在滑块K停下后,其速度v随位移x的变化规律满足:
。要使导轨右端不碰到障碍物,则缓冲车与障碍物C碰撞前,导轨右端与滑块K的cd边距离至少多大?

(1)求滑块K的线圈中最大感应电动势的大小;
(2)若缓冲车厢向前移动距离L后速度为零,则此过程线圈abcd中通过的电量和产生的焦耳热各是多少?
(3)若缓冲车以某一速度


试卷分析
-
【1】题量占比
单选题:(3道)
多选题:(4道)
解答题:(2道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:6
7星难题:0
8星难题:3
9星难题:0