1.单选题- (共5题)
1.
下列叙述错误的是


A.图甲:观察桌面微小形变的实验,采用了放大法 |
B.图乙:伽利略研究力和运动关系时,运用了理想实验方法 |
C.图丙:利用红蜡块的运动探究合运动和分运动的实验,体现了等效替代的思想 |
D.图丁:探究影响电荷间相互作用力的因素时,运用了类比法 |
2.
汽车甲和乙在同一公路上做直线运动,下图是它们运动过程中的U-t图像,二者在t1和t2时刻的速度分别为v1和v2,则在t1到t2时间内


A.t1时刻甲的加速度小于乙的加速度 |
B.乙运动的加速度不断增大 |
C.甲与乙间距离越来越大 |
D.乙的平均速度等于![]() |
3.
如图所示,倾角为θ的斜面体c置于水平地面上,小盒b置于斜面上,通过细绳跨过光滑的定滑轮与物体a连接,连接b的一段细绳与斜面平行,连接a的一段细绳竖直.a连接在竖直固定在地面的弹簧上端现在b盒内缓慢放入适量砂粒,abe始终处于静止状态,下列说法正确的是


A.弹簧的弹力可能增大 |
B.b盒所受的摩擦力一定减小 |
C.斜面体c对地面的压力可能不变 |
D.地面对c的摩擦力一定不变 |
4.
2018年1月12日,我国成功发射北斗三号组网卫星。如图为发射卫星的示意图,先将卫星发射到半径为r1=r的圆轨道上做匀速圆周运动,到A点时使卫星加速进入椭圆轨道,到椭圆轨道的远地点B点时,再次改变卫星的速度,使卫星进入半径为r2=2r的圆轨道做匀速圆周运动。.已知卫星在椭圆轨道时距地心的距离与速度的乘积为定值,卫星在椭圆轨道上A点时的速度为v,卫星的质量为m,地球质量为M,引力常量为G,则发动机在A点对卫星做的功与在B点对卫星做的功之差为(不计卫星的质量变化)


A.![]() | B.![]() |
C.![]() | D.![]() |
5.
如图所示,由Oa、Ob、Oc三个铝制薄板互成120°角均匀分开的I、Ⅱ、Ⅲ三个匀强磁场区域,其磁感应强度分别用B1、B2、B3表示。现有带电粒子自a点垂直Oa板沿逆时针方向射入磁场中,带电粒子完成一周运动,假设带电粒子穿过铝质薄板过程中电荷量不变,在三个磁场区域中的运动时间之比为1:3:5,轨迹恰好是一个以O为圆心的圆,不计粒子重力,则
X

A.磁感应强度B1:B2:B3=1:3:5 |
B.磁感应强度B1:B2:B3=5:3:1 |
C.其在b、c处穿越铝板所损失的动能之比为25:2 |
D.其在b、c处穿越铝板所损失的动能之比为27:5 |
2.多选题- (共4题)
6.
质量M=1kg,长为L=6m的长木板静置于粗糙水平地面上,木板与地面间的动摩擦因数μ=0.1。可视为质点的A、B两物块静放在木板上,其所在位置恰把木块的长度三等分,A、B质量分别为m1=2kg和m2=1kg,与木板间的动摩擦因数分别为μ1=0.3、μ2=0.5,现让一水平恒力F作用在物块A上,如图所示。已知最大静摩擦力等于滑动摩擦力,g=10m/s2,
则

A. 若F=3N,木板受到B的摩擦力大小为3N
B. 若F=5N,物块B受到的摩擦力大小为5N
C. 若F=10N,2s时物块A将会从木板左端滑离
D. 无论力F多大,物体B一定不会从长木板的右端掉落
则

A. 若F=3N,木板受到B的摩擦力大小为3N
B. 若F=5N,物块B受到的摩擦力大小为5N
C. 若F=10N,2s时物块A将会从木板左端滑离
D. 无论力F多大,物体B一定不会从长木板的右端掉落
7.
甲乙两列简谐横波波速均为v=2m/s,甲沿x轴负方向传播,乙沿x轴正方向传播,某时刻波的图象分别如图甲、乙所示,其中P、Q处的质点均处于波峰,关于这两列波,下列说法正确的是_________。

A. 甲波中的M处质点比P处质点先回到平衡位置
B. 从图示的时刻开始,P处质点与Q处质点同时回到平衡位置
C. 从图示的时刻开始,经过1.0s,P质点沿x轴负方向通过的位移为2m
D. 从图示的时刻开始,经过1.0s,M质点沿通过的路程为20cm
E. 如果这两列波相遇不可能形成稳定的干涉图样

A. 甲波中的M处质点比P处质点先回到平衡位置
B. 从图示的时刻开始,P处质点与Q处质点同时回到平衡位置
C. 从图示的时刻开始,经过1.0s,P质点沿x轴负方向通过的位移为2m
D. 从图示的时刻开始,经过1.0s,M质点沿通过的路程为20cm
E. 如果这两列波相遇不可能形成稳定的干涉图样
8.
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.4m.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C。现有一电荷量q=+1.0×10-4C,质量m=0.1kg的带电体(可视为质点),与水平面间的动摩擦因数μ=0.5,现让带电体从水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点,取g=10m/s2。

A. 带电体在圆形轨道C点的速度大小为4m/s
B. 释放位置P点到B点距离为2m
C. 落点D与B点的距离为0
D. 带电体在从B到C运动的过程中对轨道最大压力在B点

A. 带电体在圆形轨道C点的速度大小为4m/s
B. 释放位置P点到B点距离为2m
C. 落点D与B点的距离为0
D. 带电体在从B到C运动的过程中对轨道最大压力在B点
9.
如图是一个理想变压器的示意图,S为单刀双掷开关,P是滑动变阻器的滑动触头,R0是定值电阻,保持交变电压U1不变,下列说法正确的是


A.若P的位置不变,S由a合到b处,则电压表示数增大 |
B.若P的位置不变,S由a合到b处,则电流表示数减小 |
C.若S置于b处,将P向上滑动,则电流表示数增大 |
D.若S置于b处,将P向上滑动,则电压表示数增大 |
3.填空题- (共1题)
10.
下列说法正确的是___________。(填正确答案标号.选对1个得2分,选对2个得4分,选对3个得5分.每选错1个扣3分,最低得分为0分)
E.当水面上方的水蒸气达到饱和状态时,水中还会有水分子飞出水面
A.足球充足气后很难压缩,是因为足球内气体分子间斥力作用的结果 |
B.热量不能自发地从低温物体传到高温物体 |
C.因为布朗运动的剧烈程度跟温度有关,所以布朗运动叫分子热运动 |
D.知道阿伏伽德罗常数、气体的摩尔质量和密度,可以估算出该气体中分子间的平均距离 |
4.解答题- (共2题)
11.
弹跳杆运动是一项广受青少年欢迎的运动。弹跳杆的结构如图甲所示,一根弹簧的下端固定在跳杆的底部,上端固定在一个套在跳杆上的脚踏板底部。质量为5m的小明站在脚踏板上,当他和跳杆处于竖直静止状态时,弹簧的压缩量为x0,小明先保持稳定姿态竖直弹跳。某次弹跳中,从弹簧处于最大压缩量为5x0,开始计时,如图乙(a)所示;上升到弹簧恢复原长时,小明抓住跳杆,使得他和弹跳杆瞬间达到共同速度,如图乙(b)所示;紧接着他保持稳定姿态竖直上升到最大高度,如图乙(c)所示。已知全程弹簧始终处于弹性限度内(弹簧弹性势能满足
,k为弹簧劲度系数,x为弹簧形变量),跳杆的质量为m,重力加速度为g。空气阻力、弹簧和脚踏板的质量、以及弹簧和脚踏板与跳杆间的摩擦均可忽略不计。求:

(1)弹跳杆中弹簧的劲度系数k;
(2)从开始计时至竖直上升到最大高度过程中小明的最大速度vm;
(3)跳杆离地后上升的最大高度。


(1)弹跳杆中弹簧的劲度系数k;
(2)从开始计时至竖直上升到最大高度过程中小明的最大速度vm;
(3)跳杆离地后上升的最大高度。
12.
如图所示,足够长的水平轨道左侧b1b2﹣c1c2部分轨道间距为2L,右侧c1c2﹣d1d2部分的轨道间距为L,曲线轨道与水平轨道相切于b1b2 , 所有轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向成θ=37°的匀强磁场,磁感应强度大小为B=0.1T.质量为M=0.2kg的金属棒B垂直于导轨静止放置在右侧窄轨道上,质量为m=0.1kg的导体棒A自曲线轨道上a1a2处由静止释放,两金属棒在运动过程中始终相互平行且与导轨保持良好接触,A棒总在宽轨上运动,B棒总在窄轨上运动.已知:两金属棒接入电路的有效电阻均为R=0.2Ω,h=0.2m,L=0.2m,sin37°=0.6,cos37°=0.8,g=10m/s2求:

(1)金属棒A滑到b1b2处时的速度大小;
(2)金属棒B匀速运动的速度大小;
(3)在两棒整个的运动过程中通过金属棒A某截面的电量;
(4)在两棒整个的运动过程中金属棒A、B在水平导轨间扫过的面积之差.

(1)金属棒A滑到b1b2处时的速度大小;
(2)金属棒B匀速运动的速度大小;
(3)在两棒整个的运动过程中通过金属棒A某截面的电量;
(4)在两棒整个的运动过程中金属棒A、B在水平导轨间扫过的面积之差.
5.实验题- (共1题)
试卷分析
-
【1】题量占比
单选题:(5道)
多选题:(4道)
填空题:(1道)
解答题:(2道)
实验题:(1道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:1
5星难题:0
6星难题:10
7星难题:0
8星难题:1
9星难题:1